在寻找其他一些东西时,我在StackOverlow家族网站之一上遇到了一个问题:Quantitative Finance aka Quant StackExchange。问题:
它被标记为Python,因此值得一看的是 backtrader 是否能够胜任这项任务。
分析仪本身
该问题似乎适合用于简单的分析器。虽然问题只是想要那些高于移动平均线的信息,但我们将保留额外的信息,例如不符合标准的股票,以确保谷物实际上与谷壳分离。
class Screener_SMA(bt.Analyzer):
    params = dict(period=10)
    def start(self):
        self.smas = {data: bt.indicators.SMA(data, period=self.p.period)
                     for data in self.datas}
    def stop(self):
        self.rets['over'] = list()
        self.rets['under'] = list()
        for data, sma in self.smas.items():
            node = data._name, data.close[0], sma[0]
            if data > sma:  # if data.close[0] > sma[0]
                self.rets['over'].append(node)
            else:
                self.rets['under'].append(node)
注意
当然,还需要import backtrader as bt
这几乎解决了这个问题。分析仪分析:
-  
有
period作为参数才有一个灵活的分析仪 -  
start方法对于系统中的每个数据,为其创建一个简单的移动平均线(
SMA)。 -  
stop方法查看哪些数据(
close如果未指定任何其他数据)高于其 sma,并将其存储在返回项 () 中键over下的清单中。rets该成员
rets是 analyzers 的标准,恰好是collections.OrderedDict.由基类创建。将不符合标准的那些保留在键下
under 
现在的问题是:启动并运行分析器。
注意
我们假设代码已放入名为st-screener.py
方法 1
backtrader 几乎从一开始就包括一个自动脚本,该btrun脚本可以加载策略,指针, analyzers python模块,解析参数,当然还有绘图。
让我们运行一下:
$ btrun --format yahoo --data YHOO --data IBM --data NVDA --data TSLA --data ORCL --data AAPL --fromdate 2016-07-15 --todate 2016-08-13 --analyzer st-screener:Screener_SMA --cerebro runonce=0 --writer --nostdstats
===============================================================================
Cerebro:
  -----------------------------------------------------------------------------
  - Datas:
    +++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++
    - Data0:
      - Name: YHOO
      - Timeframe: Days
      - Compression: 1
    +++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++
    - Data1:
      - Name: IBM
      - Timeframe: Days
      - Compression: 1
    +++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++
    - Data2:
      - Name: NVDA
      - Timeframe: Days
      - Compression: 1
    +++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++
    - Data3:
      - Name: TSLA
      - Timeframe: Days
      - Compression: 1
    +++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++
    - Data4:
      - Name: ORCL
      - Timeframe: Days
      - Compression: 1
    +++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++
    - Data5:
      - Name: AAPL
      - Timeframe: Days
      - Compression: 1
  -----------------------------------------------------------------------------
  - Strategies:
    +++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++
    - Strategy:
      *************************************************************************
      - Params:
      *************************************************************************
      - Indicators:
        .......................................................................
        - SMA:
          - Lines: sma
          ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
          - Params:
            - period: 10
      *************************************************************************
      - Observers:
      *************************************************************************
      - Analyzers:
        .......................................................................
        - Value:
          - Begin: 10000.0
          - End: 10000.0
        .......................................................................
        - Screener_SMA:
          ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
          - Params:
            - period: 10
          ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
          - Analysis:
            - over: ('ORCL', 41.09, 41.032), ('IBM', 161.95, 161.221), ('YHOO', 42.94, 39.629000000000005), ('AAPL', 108.18, 106.926), ('NVDA', 63.04, 58.327)
            - under: ('TSLA', 224.91, 228.423)
我们使用了一组众所周知的股票代码:
AAPL,IBM,NVDA,ORCL,TSLA,YHOO
唯一一个碰巧在简单移动平均线下10 的日子是 TSLA。
让我们尝试一个50 几天的时间。是的,这也可以用 来控制 btrun。运行(输出缩短):
$ btrun --format yahoo --data YHOO --data IBM --data NVDA --data TSLA --data ORCL --data AAPL --fromdate 2016-05-15 --todate 2016-08-13 --analyzer st-screener:Screener_SMA:period=50 --cerebro runonce=0 --writer --nostdstats
===============================================================================
Cerebro:
  -----------------------------------------------------------------------------
  - Datas:
    +++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++
    - Data0:
...
...
...
        - Screener_SMA:
          ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
          - Params:
            - period: 50
          ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
          - Analysis:
            - over: ('ORCL', 41.09, 40.339), ('IBM', 161.95, 155.0356), ('YHOO', 42.94, 37.9648), ('TSLA', 224.91, 220.4784), ('AAPL', 108.18, 98.9782), ('NVDA', 63.04, 51.4746)
            - under:
请注意,在50 命令 line中是如何指定天数的:
-  
st-screener:Screener_SMA:period=50在上一次运行中,这是
st-screener:Screener_SMA并且使用了代码中的默认值10。 
我们还需要进行调整fromdate ,以确保有足够的柱线来计算简单移动平均线
在这种情况下,所有股票代码都高于日移动50 平均线。
方法 2
制作一个小脚本(请参阅下面的完整代码),以便更好地控制我们的工作。但结果是一样的。
内核相当小:
    cerebro = bt.Cerebro()
    for ticker in args.tickers.split(','):
        data = bt.feeds.YahooFinanceData(dataname=ticker,
                                         fromdate=fromdate, todate=todate)
        cerebro.adddata(data)
    cerebro.addanalyzer(Screener_SMA, period=args.period)
    cerebro.run(runonce=False, stdstats=False, writer=True)
其余大部分是关于参数解析的。
几天10 (再次缩短输出):
$ ./st-screener.py
===============================================================================
Cerebro:
...
...
...
        - Screener_SMA:
          ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
          - Params:
            - period: 10
          ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
          - Analysis:
            - over: (u'NVDA', 63.04, 58.327), (u'AAPL', 108.18, 106.926), (u'YHOO', 42.94, 39.629000000000005), (u'IBM', 161.95, 161.221), (u'ORCL', 41.09, 41.032)
            - under: (u'TSLA', 224.91, 228.423)
相同的结果。因此,让我们避免重复几天50 。
总结
btrun方法 1 中的小脚本和方法 2 中的小脚本都使用完全相同的分析器,因此提供相同的结果。
backtrader已经能够经受住另一个小挑战
最后两点:
-  
这两种方法都使用内置的 writer 功能来提供输出。
-  
作为参数 to
btrunwith--writer -  
作为参数 to
cerebro.runwithwriter=True 
 -  
 -  
在这两种情况下
runonce,都已停用。这是为了确保在线数据保持同步,因为结果可能具有不同的长度(其中一只股票的交易可能较少) 
脚本用法
$ ./st-screener.py --help
usage: st-screener.py [-h] [--tickers TICKERS] [--period PERIOD]
SMA Stock Screener
optional arguments:
  -h, --help         show this help message and exit
  --tickers TICKERS  Yahoo Tickers to consider, COMMA separated (default:
                     YHOO,IBM,AAPL,TSLA,ORCL,NVDA)
  --period PERIOD    SMA period (default: 10)
完整脚本
#!/usr/bin/env python
# -*- coding: utf-8; py-indent-offset:4 -*-
###############################################################################
#
# Copyright (C) 2015, 2016 Daniel Rodriguez
#
# This program is free software: you can redistribute it and/or modify
# it under the terms of the GNU General Public License as published by
# the Free Software Foundation, either version 3 of the License, or
# (at your option) any later version.
#
# This program is distributed in the hope that it will be useful,
# but WITHOUT ANY WARRANTY; without even the implied warranty of
# MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
# GNU General Public License for more details.
#
# You should have received a copy of the GNU General Public License
# along with this program.  If not, see <http://www.gnu.org/licenses/>.
#
###############################################################################
from __future__ import (absolute_import, division, print_function,
                        unicode_literals)
import argparse
import datetime
import backtrader as bt
class Screener_SMA(bt.Analyzer):
    params = dict(period=10)
    def start(self):
        self.smas = {data: bt.indicators.SMA(data, period=self.p.period)
                     for data in self.datas}
    def stop(self):
        self.rets['over'] = list()
        self.rets['under'] = list()
        for data, sma in self.smas.items():
            node = data._name, data.close[0], sma[0]
            if data > sma:  # if data.close[0] > sma[0]
                self.rets['over'].append(node)
            else:
                self.rets['under'].append(node)
DEFAULTTICKERS = ['YHOO', 'IBM', 'AAPL', 'TSLA', 'ORCL', 'NVDA']
def run(args=None):
    args = parse_args(args)
    todate = datetime.date.today()
    # Get from date from period +X% for weekeends/bank/holidays: let's double
    fromdate = todate - datetime.timedelta(days=args.period * 2)
    cerebro = bt.Cerebro()
    for ticker in args.tickers.split(','):
        data = bt.feeds.YahooFinanceData(dataname=ticker,
                                         fromdate=fromdate, todate=todate)
        cerebro.adddata(data)
    cerebro.addanalyzer(Screener_SMA, period=args.period)
    cerebro.run(runonce=False, stdstats=False, writer=True)
def parse_args(pargs=None):
    parser = argparse.ArgumentParser(
        formatter_class=argparse.ArgumentDefaultsHelpFormatter,
        description='SMA Stock Screener')
    parser.add_argument('--tickers', required=False, action='store',
                        default=','.join(DEFAULTTICKERS),
                        help='Yahoo Tickers to consider, COMMA separated')
    parser.add_argument('--period', required=False, action='store',
                        type=int, default=10,
                        help=('SMA period'))
    if pargs is not None:
        return parser.parse_args(pargs)
    return parser.parse_args()
if __name__ == '__main__':
    run()